Sarah Schyck

in https://www.linkedin.com/in/sschyck/
 https://sschyck.github.io

I am a materials scientist with a multidisciplinary background spanning nanomaterials, high-pressure physics, and colloidal synthesis. My doctoral research focused on the development of magnetic colloids using wet chemistry techniques. Currently, I am a postdoctoral researcher exploring biohybrid materials made with and from fungal composites, combining natural architecture with synthetic design. My work bridges soft matter, biomaterials, and sustainable fabrication.

Employment

Nov 2023 – Current	■ Postdoctoral Researcher at TU Delft, NLD Led research on living composites and microscale investigation of fungal signaling. Mentored PhD and MSc students, guiding experimental design and data analysis.
Jan 2016 – July 2016	ORAU and LSE Intern at Savannah River National Lab, USA Synthesized and characterized noble metal nanoparticles, studying their nucleation and growth mechanisms.

Education

May 2019 – Sep 2023	PhD in Chemical Engineering, TU Delft, NLD Thesis title: Anisotropic and Magnetic Microparticles: Preparation and Out-of- Equilibrium Assembly
Sep 2016 – May 2018	■ M.Sc. in Physics, University of Nevada, Las Vegas, USA Thesis title: Studies of Inner-shell Chemistry of Mercury Based Compounds under Extreme Conditions. DOI: 10.34917/14279172
Sep 2012 – Dec 2015	■ B.S. in Physics, University of Georgia, USA Projects: Effect of Organic Hole Scavengers on the Photochromism of Bi ₂ WO ₆ and Growth of Cu nanofilms on polystyrene bead mono layer substrates by means of oblique angle physical vapor deposition.

Teaching Experience

Sep 2019 – Sep 2023	 Graduate Teaching Assistant at TU Delft, Delft, Netherlands Taught Molecular Transport Phenomena and Advanced Interfacial Engineering. Supervised B.Sc. and M.Sc. thesis projects, focusing on developing students' modeling and experimental skills.
Jan 2017 – May 2018	Graduate Teaching Assistant at University of Nevada, Las Vegas, U.S. Two introductory physics laboratory sections per semester: non-calculus based physics I and calculus based electromagnetism.

Skills

- Material Characterization: Proficient in a wide range of techniques including XRD, SAXS, SEM, TEM, spectroscopy (Far-, Mid-, and FT-IR, UV-Vis, and Raman), and optical microscopy methods.
- Leadership & Mentoring: Skilled in guiding and mentoring students and junior researchers, fostering a collaborative and productive research environment.
- **Data Analysis & Visualization:** Advanced proficiency in Python, MatLab, and software specifc data analysis tools. Experienced in physics-based models for material characterizations.
- **Communication:** Effective in summarizing complex information and engaging with the scientific community through presentations at international conferences and a leading role in manuscript publication.

Selected Publications

Journal Articles

- **Sarah Schyck**, Madam, N. R. & Rossi, L. (2025). Reshapable magnetic particles for morphologycontrolled soft systems. *Soft Matter*. doi:10.1039/D5SM00061K
- Sarah Schyck, Marchese, P., Amani, M., Ablonczy, M., Spoelstra, L., Jones, M., ... Masania, K. (2024). Harnessing Fungi Signaling in Living Composites. *Global Challenges*, 2400104. doi:10.1002/gch2.202400104
- 3 Sarah Schyck, Meijer, J.-M., Schelling, M. P. M., Petukhov, A. V. & Rossi, L. (2023, November). Droplet-based assembly of magnetic superballs. *Journal of Physics: Materials*, 7(1), 015003. Publisher: IOP Publishing. doi:10.1088/2515-7639/ad08d3
- Sarah Schyck, Meijer, J.-M., Baldauf, L., Schall, P., Petukhov, A. V. & Rossi, L. (2022). Selfassembly of colloidal superballs under spherical confinement of a drying droplet. *JCIS Open*, 5, 100037. doi:https://doi.org/10.1016/j.jciso.2021.100037
- 5 Sarah Schyck, Evlyukhin, E., Kim, E. & Pravica, M. (2019). High pressure behavior of mercury difluoride (HgF2). *Chemical Physics Letters*. doi:10.1016/j.cplett.2019.03.045
- Evlyukhin, E., Kim, E., Goldberger, D., Cifligu, P., Sarah Schyck, Weck, P. F. & Pravica, M. (2018). High-pressure-assisted x-ray-induced damage as a new route for chemical and structural synthesis. *Phys. Chem. Chem. Phys.* 20, 18949–18956. doi:10.1039/C8CP02119H

Selected Conferences

2023	■ APS March Meeting Talk presented: S. Schyck, S.C. Cure, S. Sacanna, L. Rossi. "Enhanced Swimming Behavior of Active Hemat- ite Microparticles," (4–11 March 2023, Las Vegas, USA)
2022	APS March Meeting Talk presented: S. Schyck, J.M. Meijer, M. Schelling, A. Petoukhov, L. Rossi. "Self-assembly of Colloidal Hematite in Evaporating Droplets," (14-18 March 2022, Chicago, USA)
2021	CHAINS Talk presented:

S. Schyck, J.M. Meijer, L. Baldauf, P. Schall, A. Petoukov, L. Rossi "*Crystallization of Colloidal Superballs in Evaporating Droplets*," (7–8 December 2021, Virtual)